
Typecasting Explained: Part 3
by Brian Long

This article doesn’t really cover
anything more on typecasting

than has been covered previously:
it’s more targeted at taking a small
task through several stages of de-
velopment, making use of a variety
of useful Object Pascal techniques,
which include safe object typecast-
ing. The task involves having an
application that views tables and
more particularly has a number of
menu items that load up particular
tables. The end result is shown in
the screen shot on the right.

There are a number of ways to
tackle the problem of how to code
this in Delphi. We’ll start by looking
at the obvious ones and move
along to the less apparent options.
After having designed the form,
one approach would be to make
individual event handlers for each
of the three menu items that look
rather like Listing 1. Notice the
try...finally statement that
ensures the cursor is changed back
to normal, regardless of whether
there is an exception or not.

Immediately we can save some
typing, and simultaneously make
the code more efficient, by employ-
ing a with statement for both the
Screen and Table1 references (see
project RTTI1.DPR on the disk), as
shown in Listing 2.

The with statement used here
causes the compiler to look at each
term in the with block and check if
it would be sensible to prefix it with
Table1. and if it is, it implicitly does
so. If it is not sensible, it then
checks to see if it would be sensible
to prefix it with Screen. and again,
if it is, it does, and if it isn’t, it
doesn’t (still with me?). If you are
going to use multiple variables in a
with statement, look very carefully
at the order in which you list them.
The precedence goes from right to
left, and it is easy for the compiler
to access a field of the wrong
variable if you are not careful. I’ll
come back to this later.

The main problem with having
three event handlers much like the

one above is that we are duplicat-
ing most of the code. If the logic
needs changing, we need to change
it in three places. Instead, let’s try
another approach, using some
code sharing to share an event
handler between the three menu
items. We’ll consider that we are
starting again from scratch, for the
benefit of the description.

Bring up the menu designer for
the main menu component and
double click the first item to manu-
facture an event handler for its
OnClick event. The event handler
has been named after the menu
item, Customer1Click in my case,
which sort of implies, by its name,
that it is intended for use just by
the Customer1 menu item. To make

it sound a bit more generic, go to
the Events page of the Object
Inspector (F11, Ctrl+Tab will do
this, for those of you not addicted
to your mouse buttons). Over the
top of Customer1Click, type a new
name, TableMenuClick, and press
Enter. You’ll notice that this
changes the name of the event
handler in the source window.

Now get the menu designer back
– you can do this by pressing Alt+0
or choosing View | Window List to
get the window list and choosing
the window with the caption
Form1.MainMenu1. Select the second
menu item (that’s a single click this
time) and then go back to the
Object Inspector (F11). Instead of
making a new event handler, use

procedure TForm1.CustomerClick(
 Sender: TObject);
begin
 with Screen, Table1 do begin
 Cursor := crHourGlass;
 try
 DisableControls;
 Close;
 TableName := ’CUSTOMER’;
 Open;
 EnableControls;
 finally
 Cursor := crDefault;
 end;
 end;
end;

➤ Listing 2

procedure TForm1.CustomerClick(
 Sender: TObject);
begin
 Screen.Cursor := crHourGlass;
 try
 Table1.DisableControls;
 Table1.Close;
 Table1.TableName :=
 ’CUSTOMER’;
 Table1.Open;
 Table1.EnableControls;
 finally
 Screen.Cursor := crDefault;
 end;
end;

➤ Listing 1

24 The Delphi Magazine Issue 5

the drop down arrow (Alt+down
arrow) to list the event handlers
and choose TableMenuClick. After
doing this again for the third menu
item we’re now ready to implement
this common event handler.

One approach would be to check
that a menu item caused the event
to happen, by examining Sender,
and then set Table1.TableName
based on the Caption property of
the menu item. The trouble with
this is that menu item captions
have a habit of being fiddled with,
and so the reliability of the code
would not necessarily be high.
Instead, what we’ll do is use the Tag
property of each menu item to
identify it. First we need to set the
Tag property to a unique value for
each menu item of interest, via the
Properties page of the Object
Inspector. We’ll use 1, 2 and 3
respectively. Now we can employ
the run-time type information op-
erators to do some safe typecast-
ing, and get code that looks like
Listing 3 (see project RTTI2.DPR).
You may notice that I am checking
for a condition (non-empty table
name) and then performing an
action, where the general
approach is to perform the action
and react to any exceptions using a
try...except block. The only
reason I am checking is for brevity.

We check that the component
that caused the event to happen is
a TMenuItem and then go into a with
statement, this time on three
object references. This time, the
order of the references is impor-
tant. We refer in the code to the Tag
property, which is common to all
components. Because we actually
want to refer to the menu item’s Tag
property, the menu item must
appear last in the list (ie first in the
precedence order). If it were to
appear elsewhere, we would be
referring to either the Tag of the
table or of the Screen object.

The code still has room for im-
provement. Nested if statements
which compare ordinal values can
be replaced by a case statement.
This changes the inside of the with
block to the code shown in Listing
4, as found in project RTTI3.DPR.

To take it to the next stage, we
need to know about a convenient,

but strange, facility in Object
Pascal. Normally, variables are not
initialised to any value (except
object data fields which are all
zeroed), but we can get initialised
variables using typed constants
(which aren’t really constants at
all). They have initial values stored
in the executable file, and are given
them at program startup. If the
value is modified any time after

that, they keep that new value. This
is true regardless of whether they
are local or non-local. The re-
working of TableMenuClick (Listing
5) is in project RTTI4.DPR.

Notice that I have stopped
comparing the TableName to an
empty string to decide whether to
open the table. Again, I am check-
ing rather than exception handling.
There is a good reason this time.

procedure TForm1.TableMenuClick(Sender: TObject);
begin
 if Sender is TMenuItem then
 with Screen, Table1, TMenuItem(Sender) do begin
 { Ensure menu item is last so the Tag references go to it,
 not the table }
 Cursor := crHourGlass;
 try
 DisableControls;
 Close;
 if Tag = 1 then TableName := ’CUSTOMER’
 else if Tag = 2 then TableName := ’ORDERS’
 else if Tag = 3 then TableName := ’ITEMS’;
 if TableName <> ’’ then Open;
 EnableControls;
 finally
 Cursor := crDefault;
 end;
 end;
end;

➤ Listing 3

Cursor := crHourGlass;
DisableControls;
Close;
case Tag of
 1: TableName := ’CUSTOMER’;
 2: TableName := ’ORDERS’;
 3: TableName := ’ITEMS’;
end;
if TableName <> ’’ then Open;
EnableControls;
Cursor := crDefault;

➤ Listing 4

procedure TForm1.TableMenuClick(Sender: TObject);
const
 Tables: array[1..3] of String[8] = (’CUSTOMER’, ’ORDERS’, ’ITEMS’);
begin
 if Sender is TMenuItem then
 with Screen, Table1, TMenuItem(Sender) do begin
 { Ensure menu item is last so the Tag references go to it,
 not the table }
 Cursor := crHourGlass;
 try
 DisableControls;
 Close;
 if Tag in [1..3] then begin
 TableName := Tables[Tag];
 Open;
 end;
 EnableControls;
 finally
 Cursor := crDefault;
 end;
 end;
end;

➤ Listing 5

January 1996 The Delphi Magazine 25

Out of range array indexing will
only cause an exception if a
compiler option (range checking)
is set on (not the default). If it is off,
there is a good chance of a terminal
failure. This time I am using a set
operator on a set of values
specified using a subrange. The
reason for the change is that if
another menu item, with a Tag
property outside of our range,
were to trigger the event, the index
used in the array would be out of
range: it only has elements from
1 to 3. So I check that it is in range,
and if it is, index the array and open
the table.

We’re nearly there now, but
there’s one thing left to do to make
this a Windows application taking
advantage of Windows facilities.
The last version (RTTI5.DPR) uses
a Windows string table resource to
store the table names. This allows
easy modification of the applica-
tion, if the tables change, without
the need for recompilation. To do
this using only the tools supplied
with Delphi, we need a resource
script, which is a text file with a .RC
extension.

When we have entered all the
resource information, we can use
the command-line tool BRC.EXE to
compile it into a binary .RES file. To
link it into the executable, we will
use a $R compiler directive, in just
the same way as Delphi does in
each form file to link the form
resources in. Beware though,
Delphi automatically generates a
.RES file for each project, contain-
ing the program icon. This file has
the same root name as the project,
so ensure your own custom
resources go in a differently named
file, otherwise Delphi will happily
wipe them out.

Since the project is called
RTTI5.DPR and the form unit is
called RTTI5U.PAS, I will call the
resource file RTTI5U.RC. Although
the Delphi form resource is in
RTTI5U.DFM, there will not be a
problem – the DFM file is already
compiled. RTTI5U.RC is shown in
Listing 6.
The syntax for string table
resources is given in the Windows
API help file supplied with Delphi.
Select Help | Windows API and then

Resource Statements and finally
STRINGTABLE. Although the RC file
syntax was developed for C compil-
ers, Borland’s resource compiler
allows you to include Pascal
constant definition units, to
facilitate easy referencing of
resources in your application. The
file RTTI5U2.PAS that you see being
included is very simple:

unit Rtti5u2;
interface
const TablesOffset = 100;
implementation
end.

It just has one constant in it. This
constant is shared between the
resource and the Delphi program:
the resources are defined using the
constant, the program references
the resources using the same
constant. So long as the RTTI5U
unit has RTTI5U2 in its uses state-
ment, we can re-code the
TableMenuClick event handler as
shown in Listing 7.

All that is left now is to compile
the RC file into a RES file:

\DELPHI\BIN\BRC -r RTTI5U.RC

The -r flag tells the resource
compiler to just compile the
resource and not attempt to bind it
into the executable. We have a $R
compiler directive to do that
second step. One point to mention.
Since the resource file has the
same root name as the unit, you do
not need to say {$R RTTI5U.RES}

unless you want to, {$R *.RES}
suffices.

And there we have it. Several
development cycles and we have a
reasonably efficient, un-duplicated
implementation whose data can be
modified without recourse to the
compiler (you can relink a changed
resource file into the executable
either with BRC RTTI5U.RC or, if it is
already compiled, with RLINK
RTTI5U.RES RTTI5.EXE). Along the
way we have seen event handler
sharing and renaming, with
statements over multiple vari-
ables, run-time typing information
operators, subranges, typed
constants, set operators, string
tables and command-line resource
compilers.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

#include <rtti5u2.pas>
STRINGTABLE
BEGIN
 TablesOffset + 1 “CUSTOMER.DB”
 TablesOffset + 2 “ORDERS.DB”
 TablesOffset + 3 “ITEMS.DB”
END

➤ Listing 6

{$R *.RES} { Bind in compiled version of RTTI5U.RC }
procedure TForm1.TableMenuClick(Sender: TObject);
begin
 if Sender is TMenuItem then
 with Screen, Table1, TMenuItem(Sender) do begin
 { Ensure menu item is last so the Tag references go to it,
 not the table }
 Cursor := crHourGlass;
 try
 DisableControls;
 Close;
 if Tag in [1..3] then begin
 TableName := LoadStr(TablesOffset + Tag);
 Open;
 end;
 EnableControls;
 finally
 Cursor := crDefault;
 end;
 end;
end;

➤ Listing 7

26 The Delphi Magazine Issue 5

